
Simulink® HDL Coder™
Release Notes

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® HDL Coder™ Release Notes
© COPYRIGHT 2007–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Summary by Version . 1

Version 1.6 (R2009b) Simulink® HDL Coder Software . . 4

Version 1.5 (R2009a) Simulink® HDL Coder Software . . 15

Version 1.4 (R2008b) Simulink® HDL Coder Software . . 26

Version 1.3 (R2008a) Simulink® HDL Coder Software . . 38

Version 1.2 (R2007b) Simulink® HDL Coder Software . . 55

Version 1.1 (R2007a) Simulink® HDL Coder Software . . 64

Compatibility Summary for Simulink® HDL Coder
Software . 67

iii

iv Contents

Simulink® HDL Coder™ Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 1.

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

Latest Version
V1.6 (R2009b)

Yes
Details

Yes
Summary

None Printable Release
Notes: PDF

Current product
documentation

V1.5 (R2009a) Yes
Details

Yes
Summary

None No

V1.4 (R2008b) Yes
Details

Yes
Summary

Bug Reports No

V1.3 (R2008a) Yes
Details

Yes
Summary

Bug Reports No

V1.2 (R2007b) Yes
Details

Yes
Summary

Bug Reports No

V1.1 (R2007a) Yes
Details

No Bug Reports No

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

1

http://www.mathworks.com/access/helpdesk/help/pdf_doc/slhdlcoder/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a

Simulink® HDL Coder™ Release Notes

Review the release notes for other MathWorks™ products required for this
product (for example, MATLAB® or Simulink®). Determine if enhancements,
bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one,
review the current release notes and all interim versions. For example, when
you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

Compatibility issues reported after the product release appear under Bug
Reports at The MathWorks™ Web site. Bug fixes can sometimes result
in incompatibilities, so review the fixed bugs in Bug Reports for any
compatibility impact.

Fixed Bugs and Known Problems

The MathWorks offers a user-searchable Bug Reports database so you can
view Bug Reports. The development team updates this database at release
time and as more information becomes available. Bug Reports include
provisions for any known workarounds or file replacements. Information is
available for bugs existing in or fixed in Release 14SP2 or later. Information
is not available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

2

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/

Summary by Version

About Functions and Properties Being Removed
This section lists functions or properties removed or in the process of being
removed. Functions and properties typically go through several stages across
multiple releases before being completely removed. This provides time for you
to make adjustments to your code.

• Announcement — The Release Notes announce the planned removal, but
there are no functional changes; the function runs as it did before.

• Warning — When you run the function, it displays a warning message
indicating it will be removed in a future release; otherwise the function
runs as it did before.

• Error — When you run the function, it produces an error. The error
message indicates the function was removed and suggests a replacement
function, if one is available.

• Removal — When you run the function, it fails. The error message is the
standard message when MATLAB does not recognize an entry.

Functions and properties might be in a stage for one or more releases before
moving to another stage. Functions and properties are listed in the Functions
and Properties Being Removed section only when they enter a new stage
and their behavior changes. For example, if a function displayed a warning
in the previous release and errors in this release, it appears on the list. If it
continues to display a warning, it does not appear on the list because there
was no change between the releases.

Not all functions and properties go through all stages. For example, a
function’s impending removal might not be announced, but instead, the first
notification might be that the function displays a warning.

The Release Notes include actions you can take to mitigate the effects of
function or property removal, such as adapting your code to use a replacement
function.

3

Simulink® HDL Coder™ Release Notes

Version 1.6 (R2009b) Simulink HDL Coder Software
This table summarizes what’s new in Version 1.6 (R2009b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

None Printable Release
Notes: PDF

Current product
documentation

New features and changes introduced in this version are:

• “Triggered Subsystems Support for HDL Code Generation” on page 5

• “Stateflow Events Support for HDL Code Generation” on page 5

• “Support for Global Oversampling Clock” on page 5

• “Test Bench GUI Reorganized” on page 6

• “MATLAB Editor Supports VHDL and Verilog Syntax Highlighting” on
page 7

• “Hyperlinked Requirements Comments Included in HTML Code
Generation Reports” on page 7

• “HTML Code Generation Report from Root-Level Model Supported” on
page 7

• “Generation of Simulink Model for Cosimulation of Generated HDL Code”
on page 8

• “Additional Simulink Blocks Supported for HDL Code Generation” on page
8

• “New hdldemolib Block Supports Streaming FFT” on page 9

• “Algebraic Loops Disallowed for HDL Code Generation” on page 9

• “DUT Argument Required for checkhdl and makehdl Commands” on page 9

4

http://www.mathworks.com/access/helpdesk/help/pdf_doc/slhdlcoder/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

• “AddClockEnablePort Implementation Parameter for RAM Blocks
Deprecated” on page 10

• “Additional Lookup Table Blocks Supported” on page 11

• “Discrete FIR Filter Supports Distributed Arithmetic Architecture” on
page 11

• “Generation of Multicycle Path Constraint Information” on page 12

• “Biquad Filter and Digital Filter Blocks Support Complex Input Data and
Coefficients” on page 13

• “Support for Adding or Removing HDL Configuration Component” on
page 13

Triggered Subsystems Support for HDL Code
Generation
The coder now supports HDL code generation for triggered subsystems. See
“Code Generation for Enabled and Triggered Subsystems” in the Simulink®

HDL Coder™ documentation for further information.

Stateflow Events Support for HDL Code Generation
The coder now supports a single input event and unlimited output events
in Stateflow® charts. for further information, see “Using Input and Output
Events” in the Simulink HDL Coder documentation.

Support for Global Oversampling Clock
You can now generate global clock logic that allows you to integrate your DUT
into a larger system easily, without using Upsample or Downsample blocks.

To generate global clock logic, you specify an oversampling factor. The
oversampling factor expresses the desired rate of the global oversampling
clock as a multiple of the base rate of the model. When you specify an
oversampling factor, the coder generates the global oversampling clock. Then,
it derives the required timing signals from the clock signal. Generation of the
global oversampling clock affects only generated HDL code. The clock does
not affect the simulation behavior of your model.

5

Simulink® HDL Coder™ Release Notes

You can specify the desired factor as the Oversampling factor option in the
Clock settings section of the Global Settings pane of the Configuration
Parameters dialog . The following figure shows the option. Alsternatively,
you can set the command-line property 'Oversampling'.

See “Generating a Global Oversampling Clock” in the Simulink HDL Coder
documentation for further information.

Test Bench GUI Reorganized
The new Testbench generation output section of the GUI contains three
new options:

• HDL test bench: Selecting this option enables generation of an HDL
test bench, and also enables all options in the Configuration section of
the Test Bench pane.

6

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

• Cosimulation blocks: Selecting this option enables generation of a model
containing HDL Cosimulation block for use in testing the DUT. Selecting
this option also enables all options in the Configuration section of the
Test Bench pane.

• Cosimulation model for use with: This option enables generation of a
model containing an HDL Cosimulation block for use in testing with a
selected cosimulation tool. Selecting this option also enables all options in
the Configuration section of the Test Bench pane.

To configure test bench options and generate test bench code, select one or
more of the options of the Testbench generation output section. If you
deselect all three options of the Testbench generation output section, the
coder disables all options in the Configuration section of the Test Bench
pane.

MATLAB Editor Supports VHDL and Verilog Syntax
Highlighting
The MATLAB Editor now supports syntax highlighting for VHDL and Verilog
code. See “Highlighting Syntax to Help Ensure Correct Entries” in the
MATLAB documentation for further information on syntax highlighting.

Hyperlinked Requirements Comments Included in
HTML Code Generation Reports
The coder now renders requirements comments as hyperlinked comments
within generated HTML code generation reports. See “Requirements
Comments and Hyperlinks” in the Simulink HDL Coder documentation for
further information.

HTML Code Generation Report from Root-Level Model
Supported
In previous releases, the coder did not support generation of HTML code
generation reports from the root-level model. R2009b removes this restriction.
You can now generate reports for the root-level model as well as for
subsystems, blocks, Stateflow charts, or Embedded MATLAB™ blocks.

7

Simulink® HDL Coder™ Release Notes

Generation of Simulink Model for Cosimulation of
Generated HDL Code
The coder now supports generation of a Simulink model configured for:

• Simulink simulation of your design

• Cosimulation of your design with an HDL simulator

The generated model includes a behavioral model of your design and a
corresponding HDL Cosimulation block, configured to cosimulate the design
using EDA Simulator Link™. You can generate an HDL Cosimulation block
for either of the following:

• EDA Simulator Link for use with Mentor Graphics®ModelSim®

• EDA Simulator Link for use with Cadence Incisive®

See “Generating a Simulink Model for Cosimulation with an HDL Simulator”
for further information.

Additional Simulink Blocks Supported for HDL Code
Generation
The coder now supports the blocks listed in the following table for HDL code
generation.

Block Implementation

hdldemolib/HDL Streaming FFT hdldefaults.FFT

Ports & Subsystems/Trigger hdldefaults.TriggerPort

simulink/Discrete/Discrete FIR Filter hdldefaults.DiscreteFIRFilterHDLInstantiation

simulink/Lookup Tables/Direct Lookup Table
(n-D)

hdldefaults.DirectLookupTable

simulink/Lookup Tables/Lookup Table (n-D) hdldefaults.LookupTableND

simulink/Lookup Tables/Prelookup hdldefaults.PreLookup

8

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

“Summary of Block Implementations” in the Simulink HDL Coder
documentation gives a complete listing of blocks that the coder supports for
HDL code generation.

New hdldemolib Block Supports Streaming FFT
The new hdldemolib/HDL Streaming FFT block supports a Radix-2 DIF
streaming FFT algorithm.

See “HDL Streaming FFT” in the Simulink HDL Coder documentation for
details.

Algebraic Loops Disallowed for HDL Code Generation
The coder now checks for algebraic loops during the compatibility checking
phase of the code generation process. If makehdl detects an algebraic loop
inside the DUT, the coder displays an error message and ends the code
generation process.

Compatibility Considerations
Restructure any of your models that contain algebraic loops such that
algebraic loops do not occur. It is also good practice to set the Algebraic
loop diagnostic in the Diagnostics pane of the Configuration Parameters
dialog box to error.

DUT Argument Required for checkhdl and makehdl
Commands
R2009b requires that calls to the following functions must specify the device
under test (DUT):

• checkhdl

• makehdl

When you call checkhdl or makehdl, specify the DUT as the initial argument
to these functions, as in the following example:

makehdl('sfir_fixed/symmetric_fir','TargetLanguage', 'Verilog');

9

Simulink® HDL Coder™ Release Notes

As in previous releases, you can specify the DUT in any of the following forms:

• bdroot: the current model.

• 'modelname': an explicitly specified model.

• 'modelname/subsys': explicitly specified path to a subsystem.

• gcb: the currently selected subsystem

This requirement avoids certain ambiguities that occurred in calls to
checkhdl or makehdl that did not pass in an explicit DUT argument.

In R2009b, the coder displays a warning if it encounters a call to checkhdl
or makehdl without the DUT argument. In future releases, the coder will
generate an error if it encounters a call to either of these functions without
the DUT argument.

See also the checkhdl and makehdl function reference pages in the Simulink
HDL Coder documentation.

Compatibility Considerations
If your M-files contain any calls to checkhdl or makehdl that do not specify
the DUT, modify them to pass in the DUT as the initial argument.

AddClockEnablePort Implementation Parameter for
RAM Blocks Deprecated
The AddClockEnablePort implementation parameter for the Dual Port RAM
and Single Port RAM blocks is deprecated. The coder issues an error message
if it detects a reference to AddClockEnablePort in a control file.

Compatibility Considerations
If you use the AddClockEnablePort in a control file to suppress to generation
of a clock enable signal for RAM blocks:

• Remove all references to AddClockEnablePort from your control files.

• Use the generic RAM templates instead. The generic RAM templates
do not use a clock enable signal for RAM structures. The generic RAM

10

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

template implements clock enable with logic in a wrapper around the RAM.
Consider the generic RAM style if

- Your synthesis tool does not support RAM structures with a clock enable

- Your synthesis tool cannot map generated HDL code to FPGA RAM
resources.

To learn how to use generic style RAM for your design, see the new Getting
Started with RAM and ROM in Simulink demo. To open the demo, type the
following command at the MATLAB prompt:

hdlcoderramrom

Additional Lookup Table Blocks Supported
The coder now supports the following lookup table (LUT) blocks for HDL
code generation:

• simulink/Lookup Tables/Lookup Table (n-D)

• simulink/Lookup Tables/Prelookup

• simulink/Lookup Tables/Direct Lookup Table (n-D)

Expanded LUT functionality supported for these blocks includes:

• Tables of two dimensions

• Prelookup

• Interpolation

• Extrapolation

See “Using Lookup Table Blocks” in the Simulink HDL Coder documentation
for details.

Discrete FIR Filter Supports Distributed Arithmetic
Architecture
The code now supports distributed arithmetic (DA) filter implementations for
the Discrete FIR Filter block. See “Distributed Arithmetic Implementation

11

Simulink® HDL Coder™ Release Notes

Parameters for Digital Filter Blocks” in the Simulink HDL Coder
documentation for details.

Generation of Multicycle Path Constraint Information
The coder now supports generation of a text file that reports multicycle path
constraint information. You can use this information with your synthesis tool.

To generate the file, select the Generate multicycle path information
option in the EDA Tool Scripts pane of the Configuration Parameters dialog
box. The following figure shows this option.

To generate a multicycle path constraint information file at the command line,
set the MulticyclePathInfo property as shown in the following example.

makehdl(gcb,'MulticyclePathInfo', 'on');

12

Version 1.6 (R2009b) Simulink® HDL Coder™ Software

See “Generating Multicycle Path Information Files” in the Simulink HDL
Coder documentation for detailed information.

Biquad Filter and Digital Filter Blocks Support
Complex Input Data and Coefficients
The Biquad Filter and Digital Filter blocks now support complex input data
and coefficients for all filter structures except decimators and interpolators.

Support for Adding or Removing HDL Configuration
Component
The HDL Coder submenu of the Tools menu now supports addition or
removal of the HDL Coder configuration component of a model. The following
figure shows the Remove HDL Configuration to Model option.

13

Simulink® HDL Coder™ Release Notes

See “Adding and Removing the HDL Configuration Component” Simulink
HDL Coder documentation for more information.

14

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

Version 1.5 (R2009a) Simulink HDL Coder Software
This table summarizes what’s new in Version 1.5 (R2009a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

None Printable Release
Notes: PDF

Current product
documentation

New features and changes introduced in this version are:

• “hdlsupported Library Reorganized” on page 16

• “HTML Code Generation Report” on page 16

• “Additional Simulink Blocks Supported for HDL Code Generation” on
page 18

• “Enabled Subsystems Supported for HDL Code Generation” on page 19

• “New Default HDL Implementations for Selected Blocks” on page 19

• “New HDL Implementations for Selected Blocks” on page 21

• “Distributed Arithmetic Implementations for the Digital Filter Block” on
page 22

• “Complex Data Supported for the Digital Filter Block” on page 22

• “Requirements Comments Included in Generated Code” on page 23

• “Restriction on fi and fimath Rounding Modes in Embedded MATLAB
Function Block Removed” on page 23

• “Restriction on for Loop Increment in Embedded MATLAB Function Block
Removed” on page 24

• “Generic RAM Template Supports RAM Without a Clock Enable Signal”
on page 24

15

http://www.mathworks.com/access/helpdesk/help/pdf_doc/slhdlcoder/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/

Simulink® HDL Coder™ Release Notes

• “Generating ROM with Lookup Table and Unit Delay Blocks” on page 25

hdlsupported Library Reorganized
The hdlsupported.mdl block library has been reorganized into several
sublibraries to help you locate the HDL-compatible blocks you need more
easily. The following figure shows the top-level view of the hdlsupported.mdl
library.

The set of supported blocks will change in future releases of the coder. To
keep the hdlsupported.mdl current, you should rebuild the library each time
you install a new release. See “Supported Blocks Library” in the Simulink
HDL Coder documentation for further information.

HTML Code Generation Report
To help you navigate more easily between generated code and your source
model, the coder provides a traceability option that lets you generate reports
from either the GUI or the command line. When you enable traceability,
the coder creates and displays an HTML code generation report during the
code generation process. The following figure shows the top-level page of
a typical report.

16

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

The report comprises several sections:

• The Summary section lists version and date information.

• The Generated Source Files table contains hyperlinks to that let you
view generated HDL code in a MATLAB Web browser window. This view
of the code includes hyperlinks that let you view the blocks or subsystems
from which the code was generated. You can click the names of source code
files generated from your model to view their contents in a MATLAB Web
browser window. The report supports two types of linkage between the
model and generated code:

- Code-to-model hyperlinks within the displayed source code let you view
the blocks or subsystems from which the code was generated. Click on
the hyperlinks to view the relevant blocks or subsystems in a Simulink
model window.

- Model-to-code linkage lets you view the generated code for any block in
the model. To highlight a block’s generated code in the HTML report,
right-click the block and select HDL Coder > Navigate to Code from
the context menu.

• The Traceability Report allows you to account for Eliminated / Virtual
Blocks that are untraceable, versus the listed Traceable Simulink
Blocks / Stateflow Objects / Embedded MATLAB Scripts, providing a
complete mapping between model elements and code.

17

Simulink® HDL Coder™ Release Notes

To enable generation of the HTML code generation report, select Generate
traceability report in the HDL Coder pane of the Configuration
Parameters dialog box, as shown in the following figure.

See “Creating and Using a Code Generation Report” in the Simulink HDL
Coder documentation for further information.

Additional Simulink Blocks Supported for HDL Code
Generation
The coder now supports the blocks listed in the following table for HDL code
generation.

18

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

Block Implementation(s)

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Decrement Real World

hdldefaults.IncrementOrDecrementRWV

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Increment Real World

hdldefaults.IncrementOrDecrementRWV

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Decrement Store Integer

hdldefaults.IncrementOrDecrementSI

simulink/Additional Math & Discrete/
Additional Math: Increment -
Decrement/Increment Store Integer

hdldefaults.IncrementOrDecrementSI

simulink/Discontinuties/Saturation Dynamic hldefaults.SaturationDynamic

Signal Routing/Go To hdldefaults.GotoBlock

Signal Routing/From hdldefaults.FromBlock

dsparch4/Biquad Filter hdldefaults.BiquadFilterHDLInstantiation

Ports & Subsystems/Enable hdldefaults.EnablePort

See “Summary of Block Implementations” in the Simulink HDL Coder
documentation for a complete listing of blocks that are currently supported
for HDL code generation.

Enabled Subsystems Supported for HDL Code
Generation
The code now supports code generation for enabled subsystems, provided
that they are configured as described in “Code Generation for Enabled and
Triggered Subsystems” in the Simulink HDL Coder documentation.

New Default HDL Implementations for Selected
Blocks
The default HDL implementations for certain blocks has been changed. The
following table lists these blocks, as well as their new default implementations

19

Simulink® HDL Coder™ Release Notes

and previous default implementations. All listed implementation classes
belong to the package hdldefaults.

Block Default Implementation
Before R2009a

New Default
Implementation

simulink/Commonly Used
Blocks/Constant
simulink/Commonly Used
Blocks/Ground
dspsrcs4/DSP Constant

ConstantHDLEmission Constant

simulink/Commonly Used
Blocks/Demux

DemuxHDLEmission Demux

simulink/Commonly Used
Blocks/Mux

MuxHDLEmission Mux

simulink/Commonly Used
Blocks/Switch

SwitchHDLEmission SwitchRTW

simulink/Math
Operations/Complex to
Real-Imag

ComplexToRealImagHDLEmission ComplexToRealImag

simulink/Math
Operations/Real-Imag to
Complex

RealImagtoComplexHDLEmission RealImagtoComplex

See “Summary of Block Implementations” in the Simulink HDL Coder
documentation for a complete listing of blocks that are currently supported
for HDL code generation.

Compatibility Considerations
If your models use default HDL block implementations for the affected blocks,
the coder now defaults to the new implementations. The new implementations
are compatible with the previous implementations and will produce identical
results.

The older implementations for the listed blocks will be supported for a limited
number of future releases. If your control files explicitly reference the previous
default implementation for any of the affected blocks, the coder will continue

20

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

to use the referenced implementation. You should consider removing or
changing such references in your control files to use the new implementations.

New HDL Implementations for Selected Blocks
A number of HDL block implementations have been changed. The following
table lists these blocks, as well as their new implementations and the earlier
implementations that they replace. All listed implementation classes belong
to the package hdldefaults.

Block Implementation
Before R2009a

New Implementation

simulink/Math
Operations/MinMax
dspstat3/Maximum
dspstat3/Minimum

MinMaxCascadeHDLEmission MinMaxCascade

simulink/Commonly Used
Blocks/Sum
simulink/Math Operations/Sum of
Elements

SumTreeHDLEmission SumTree

simulink/Commonly Used
Blocks/Product
simulink/Math
Operations/Product of Elements

ProductTreeHDLEmission ProductTree

simulink/Commonly Used
Blocks/Sum
simulink/Math Operations/Sum of
Elements

SumCascadeHDLEmission SumCascade

simulink/Commonly Used
Blocks/Product
simulink/Math
Operations/Product of Elements

ProductCascadeHDLEmission ProductCascade

See “Summary of Block Implementations” in the Simulink HDL Coder
documentation for a complete listing of blocks that are currently supported
for HDL code generation.

21

Simulink® HDL Coder™ Release Notes

Compatibility Considerations
The new implementations are compatible with the previous implementations
and will produce identical results.

The older implementations for the listed blocks will be supported for a limited
number of future releases. If your control files explicitly reference the
previous implementation for any of the affected blocks, the coder will continue
to use the referenced implementation. You should consider removing or
changing such references in your control files to use the new implementations.

Distributed Arithmetic Implementations for the Digital
Filter Block
Distributed Arithmetic (DA) is a widely used technique for implementing
sum-of-products computations without using multipliers. DA distributes
multiply and accumulate operations across shifters, lookup tables (LUTs) and
adders in such a way that conventional multipliers are not required. The
coder now supports DA implementations for the following FIR structures of
the Digital Filter block:

• dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymdir

See “Block Implementation Parameters” in the Simulink HDL Coder
documentation for further information.

Complex Data Supported for the Digital Filter Block
The coder supports complex coefficients and complex input signals for fully
parallel FIR and CIC filter structures of the Digital Filter block. In many
cases, you can use complex data and complex coefficients in combination. The
following table shows the filter structures that support complex data and/or
coefficients, and the permitted combinations.

22

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

Filter Structure Complex
Data

Complex
Coefficients

Both Complex
Data
and Coefficients

dfilt.dffir Y Y Y

dfilt.dfsymfir Y Y Y

dfilt.dfasymfir Y Y Y

dfilt.dffirt Y Y Y

mfilt.cicdecim Y N/A N/A

mfilt.cicinterp Y N/A N/A

mfilt.firdecim Y Y N

mfilt.firinterp Y Y N

See “Blocks That Support Complex Data” for further information on how the
coder supports use of complex data.

Requirements Comments Included in Generated Code
Requirements that you assign to Simulink blocks are now automatically
included as comments in generated code. See the Simulink® Verification and
Validation™ User’s Guide in the Simulink HDL Coder documentation for
further information on requirements comments.

Restriction on fi and fimath Rounding Modes in
Embedded MATLAB Function Block Removed
In previous releases, the coder did not support the convergent and round
modes for the fi and fimath functions in Embedded MATLAB Function
blocks.

This restriction has been removed; the coder now supports all fi and fimath
rounding modes.

See also “Generating HDL Code with the Embedded MATLAB Function
Block” in the Simulink HDL Coder documentation.

23

Simulink® HDL Coder™ Release Notes

Restriction on for Loop Increment in Embedded
MATLAB Function Block Removed
In previous releases, the use of for loops with an increment other than 1 in
an Embedded MATLAB Function Block was not supported for HDL code
generation.

This restriction has been removed. The coder now allows use of any increment
in a for loop in an Embedded MATLAB Function Block.

See also “Generating HDL Code with the Embedded MATLAB Function
Block” in the Simulink HDL Coder documentation.

Generic RAM Template Supports RAM Without a
Clock Enable Signal
The hdldemolib library provides three type of RAM blocks:

• Dual Port RAM

• Simple Dual Port RAM

• Single Port RAM

These blocks (see “RAM Blocks” in the Simulink HDL Coder documentation)
implement RAM structures using HDL templates that include a clock enable
signal.

However, some synthesis tools do not support RAM inference with a clock
enable. As an alternative, the coder now provides a generic style of HDL
templates that do not use a clock enable signal for the RAM structures. The
generic RAM template implements clock enable with logic in a wrapper
around the RAM.

You may want to use the generic RAM style if your synthesis tool does not
support RAM structures with a clock enable, and cannot map generated HDL
code to FPGA RAM resources. To learn how to use generic style RAM for your
design, see the new Getting Started with RAM and ROM in Simulink demo.
To open the demo, type the following command at the MATLAB prompt:

hdlcoderramrom

24

Version 1.5 (R2009a) Simulink® HDL Coder™ Software

Generating ROM with Lookup Table and Unit Delay
Blocks
Simulink HDL Coder does not provide a ROM block, but you can easily build
one using basic Simulink blocks. The new Getting Started with RAM and
ROM in Simulink demo includes an example in which a ROM is built using
a Lookup Table block and a Unit Delay block. To open the demo, type the
following command at the MATLAB prompt:

hdlcoderramrom

25

Simulink® HDL Coder™ Release Notes

Version 1.4 (R2008b) Simulink HDL Coder Software
This table summarizes what’s new in Version 1.4 (R2008b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports No

New features and changes introduced in this version are:

• “New hdldemolib Blocks Support FFT, HDL Counter, and Bitwise
Operators” on page 27

• “Additional Simulink Blocks Supported for HDL Code Generation” on
page 29

• “Complex Signals Supported for Additional Blocks” on page 29

• “Code Annotation Support” on page 30

• “New Constant Block Implementation Indicates Hi-Z or Unknown States”
on page 31

• “New Test Bench Reference Postfix Option” on page 31

• “New Default HDL Implementations for Selected Blocks” on page 33

• “Default Entity Conflict Postfix Changed” on page 34

• “New DistributedPipelining Implementation Parameter for Embedded
MATLAB Function Blocks and Stateflow Charts” on page 34

• “Coefficient Multiplier Optimization for Digital Filter, FIR Decimation, and
FIR Interpolation Filters” on page 35

• “hdlnewblackbox Function Generates Black Box Control Statements” on
page 36

26

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008b

Version 1.4 (R2008b) Simulink® HDL Coder™ Software

• “hdlnewcontrolfile Function Optionally Returns Result to String” on page
37

• “-novopt Flag Added to Default Simulation Command in Generated
Compilation Scripts” on page 37

New hdldemolib Blocks Support FFT, HDL Counter,
and Bitwise Operators
The hdldemolib library now includes HDL-specific block implementations
supporting simulation and code generation for:

• Counter with count-limited and free-running modes (see “HDL Counter” in
the Simulink HDL Coder documentation)

• Minimum resource FFT (see “HDL FFT” in the Simulink HDL Coder
documentation)

• Bitwise operations, including bit slice, bit reduction, bit concatenation,
bit shift, and bit rotation (see “Bitwise Operators” in the Simulink HDL
Coder documentation)

The following figure shows the hdldemolib library window. See “The
hdldemolib Block Library” in the Simulink HDL Coder documentation for
more information about the library.

27

Simulink® HDL Coder™ Release Notes

28

Version 1.4 (R2008b) Simulink® HDL Coder™ Software

Additional Simulink Blocks Supported for HDL Code
Generation
The coder now supports the following blocks for HDL code generation:

• Signal Processing Blockset/Multirate Filters/CIC Interpolation

• Signal Processing Blockset/Multirate Filters/FIR Interpolation

(See the demo “Digital Down Converter for HDL Code Generation” for
an example of the use of this block.)

• Signal Processing Blockset/Filtering /Adaptive Filters/LMS Filter

(See the demo “Adaptive Noise Canceler with LMS Filter” for an example
of the use of this block.)

• simulink/Logic and Bit Operations/Extract Bits

• simulink/Math Operations/Math Function (now supports hermitian, and
transpose functions for HDL code generation)

• simulink/Model-Wide Utilities/DocBlock

• Stateflow Truth Table

In addition, several HDL-specific block implementations have been added to
the hdldemolib library. See “New hdldemolib Blocks Support FFT, HDL
Counter, and Bitwise Operators” on page 27.

See “Summary of Block Implementations” in the Simulink HDL Coder
documentation for a complete listing of blocks that are currently supported
for HDL code generation.

Complex Signals Supported for Additional Blocks
In the previous release, the coder introduced support for use of complex
signals with a limited set of blocks. In R2008b, the coder supports complex
signals for these additional blocks:

• dspadpt3/LMS Filter

• dspsigattribs/Frame Conversion

• dspsigops/Delay (DSPDelayHDLEmission implementation)

29

Simulink® HDL Coder™ Release Notes

• hdldemolib/Dual Port RAM

• hdldemolib/Simple Dual Port RAM

• hdldemolib/Single Port RAM

• hdldemolib/HDL FFT

• simulink/Commonly Used Blocks/Relational Operator (~= and == operators
only)

• simulink/Discrete/Memory

• simulink/Discrete/Zero-Order Hold

• simulink/Logic and Bit Operations/Compare To Constant

• simulink/Logic and Bit Operations/Compare To Zero

• simulink/Lookup Tables/Lookup Table (LookupHDLInstantiation
implementation)

• simulink/Math Operations/Assignment

• simulink/Math Operations/Math Function (hermitian, transpose)

• simulink/Signal Attributes/Signal Specification

See “Blocks That Support Complex Data” in the Simulink HDL Coder
documentation for a complete listing of blocks that support complex signals.

Code Annotation Support
The coder now lets you add text annotations to generated code, in the form of
comments. There are two ways to add annotations to your code:

• Enter text directly on the block diagram as Simulink annotations.

• Place a DocBlock at the desired level of your model and enter text
comments.

See “Annotating Generated Code with Comments and Requirements” in the
Simulink HDL Coder documentation for further information.

30

Version 1.4 (R2008b) Simulink® HDL Coder™ Software

New Constant Block Implementation Indicates Hi-Z
or Unknown States
The coder now supports an implementation for the built-in/Constant block
(hdldefaults.ConstantSpecialHDLEmission), which you can use to indicate
when a constant signal is in high-impedance ('Z') or unknown ('X') state.
The implementation provides the {Value} parameter to indicate the state, as
follows:

• {Value, 'Z'}: If the signal is in a high-impedance state, the Constant
block emits the character 'Z' for each bit in the signal. For example, for a
4-bit signal, 'ZZZZ' would be emitted.

{Value, 'Z'} is the default value for this implementation.

• {Value, 'X'}: If the signal is in an unknown state, the Constant block
emits the character 'X' for each bit in the signal. For example, for a 4-bit
signal, 'XXXX' would be emitted.

hdldefaults.ConstantSpecialHDLEmission does not support the double
data type.

See also “Blocks with Multiple Implementations” in the Simulink HDL Coder
documentation.

New Test Bench Reference Postfix Option
The new Test bench reference postfix option (shown in the following
figure) lets you customize the names of reference signals generated in test
bench code by specifying a string to be appended to reference signal names.
The default string is'_ref'.

31

Simulink® HDL Coder™ Release Notes

If you generate test bench code via the makehdltb function, use the
Testbenchreferencepostfix property (see TestBenchReferencePostFix in
the in the Simulink HDL Coder documentation) to specify the postfix string.

32

Version 1.4 (R2008b) Simulink® HDL Coder™ Software

New Default HDL Implementations for Selected
Blocks
The default HDL implementations for certain blocks has been changed. The
following table lists these blocks, as well as their new default implementations
and previous default implementations. All listed implementation classes
belong to the package hdldefaults.

Block Default Implementation
Before Release R2008b

New Default
Implementation

simulink/Commonly Used
Blocks/Data Type Conversion

DataTypeConversionHDLEmission DataTypeConversionRTW

simulink/Commonly Used
Blocks/Product

ProductLinearHDLEmission ProductRTW

simulink/Math
Operations/Divide

ProductLinearHDLEmission ProductRTW

simulink/Math
Operations/Product of
Elements

ProductLinearHDLEmission ProductRTW

simulink/Commonly Used
Blocks/Sum

SumLinearHDLEmission SumRTW

simulink/Math
Operations/Add

SumLinearHDLEmission SumRTW

simulink/Math
Operations/Sum of Elements

SumLinearHDLEmission SumRTW

simulink/Math
Operations/Subtract

SumLinearHDLEmission SumRTW

simulink/Commonly Used
Blocks/Unit Delay

UnitDelayHDLEmission UnitDelayRTW

simulink/Math
Operations/MinMax

MinMaxTreeHDLEmission MinMaxTree

dspstat3/Maximum MinMaxTreeHDLEmission MinMaxTree

dspstat3/Minimum MinMaxTreeHDLEmission MinMaxTree

33

Simulink® HDL Coder™ Release Notes

Compatibility Considerations
If your models use default HDL block implementations for the affected
blocks, the coder will now default to the new implementations. The new
implementations are compatible with the previous implementations and will
produce identical results.

The older implementations for the listed blocks will be supported for a limited
number of future releases. If your control files explicitly reference the previous
default implementation for any of the affected blocks, the coder will continue
to use the referenced implementation. You should consider removing or
changing such references in your control files to use the new implementations.

Default Entity Conflict Postfix Changed
The default value for the Entity conflict postfix property (and the
corresponding CLI property, EntityConflictPostfix) has been changed
from '_entity' to '_block'.

Compatibility Considerations
If your models or scripts rely on the previous default value ('_entity') for
the Entity conflict postfix property, you will need to explicitly set the
property value to '_entity'.

New DistributedPipelining Implementation
Parameter for Embedded MATLAB Function Blocks
and Stateflow Charts
In the previous release, the coder introduced automatic pipeline insertion,
a special optimization for HDL code generated from Embedded MATLAB
Function blocks or Stateflow charts. This optimization was enabled implicitly
by specifying the {'OutputPipeline', nStages} parameter in a control
file for these blocks.

In the current release, the new DistributedPipelining parameter lets
you explicitly enable or disable pipeline insertion, independently from the
OutputPipeline parameter. The control file listed in the following example
specifies two pipeline registers, with DistributedPipelining enabled.

34

Version 1.4 (R2008b) Simulink® HDL Coder™ Software

function c = pipeline_control

c = hdlnewcontrol(mfilename);

c.forEach('*',...

'eml_lib/Embedded MATLAB Function', {},...

'hdlstateflow.StateflowHDLInstantiation', {'OutputPipeline', 2, 'DistributedPipelining', 'on'});

The DistributedPipelining property applies only to Embedded MATLAB
Function blocks or Stateflow charts within a subsystem.

For detailed information, see “Distributed Pipeline Insertion” in the Simulink
HDL Coder documentation.

Compatibility Considerations
If your existing control files specified automatic pipelining implicitly using the
OutputPipeline parameter, you should change your control files to specify
automatic pipelining explicitly as in the following code excerpt:

c.forEach('*',...

'eml_lib/Embedded MATLAB Function', {},...

'hdlstateflow.StateflowHDLInstantiation', {'OutputPipeline', 2, 'DistributedPipelining', 'on'});

Coefficient Multiplier Optimization for Digital Filter,
FIR Decimation, and FIR Interpolation Filters
The CoeffMultipliers implementation parameter lets you specify use of
canonic signed digit (CSD) or factored CSD optimizations for processing
coefficient multiplier operations in code generated for certain filter blocks.
Specify the CoeffMultipliers parameter in a control file using the following
syntax:

• {'CoeffMultipliers', 'csd'}: Use CSD techniques to replace multiplier
operations with shift and add operations. CSD techniques minimize the
number of addition operations required for constant multiplication by
representing binary numbers with a minimum count of nonzero digits.
This decreases the area used by the filter while maintaining or increasing
clock speed.

35

Simulink® HDL Coder™ Release Notes

• {'CoeffMultipliers', 'factored-csd'}: Use factored CSD techniques,
which replace multiplier operations with shift and add operations on prime
factors of the coefficients. This option lets you achieve a greater filter area
reduction than CSD, at the cost of decreasing clock speed.

• {'CoeffMultipliers', 'multipliers'} (default): Retain multiplier
operations.

The coder supports CoeffMultipliers for the filter block implementations
shown in the following table.

Block Implementation

dsparch4/Digital Filter hdldefaults.DigitalFilterHDLInstantiation

dspmlti4/FIR Decimation hdldefaults.FIRDecimationHDLInstantiation

dspmlti4/FIR Interpolation hdldefaults.FIRInterpolationHDLInstantiation

See also “Block Implementation Parameters” in the Simulink HDL Coder
documentation.

hdlnewblackbox Function Generates Black Box
Control Statements
The hdlnewblackbox function provides a simple way to create the control
file statements that are required to generate black box interfaces for one
or more subsystems.

Given a selection of one or more subsystems from your model, hdlnewblackbox
returns the following as string data in the MATLAB workspace for each
selected subsystem:

• A forEach call coded with the correct modelscope, blocktype, and default
implementation class (SubsystemBlackBoxHDLInstantiation) arguments
for the block.

• (Optional) A cell array of strings enumerating the available
implementations classes for the subsystem, in package.class form.

• (Optional) A cell array of cell arrays of strings enumerating the names of
implementation parameters (if any) corresponding to the implementation

36

Version 1.4 (R2008b) Simulink® HDL Coder™ Software

classes. hdlnewblackbox does not list data types and other details of
implementation parameters.

For further information, see “Generating a Black Box Interface for a
Subsystem” in the Simulink HDL Coder documentation.

hdlnewcontrolfile Function Optionally Returns Result
to String
The hdlnewcontrolfile function (optionally) now can return control
statements to a string variable.

To return control statements as text in the string variable t, instead of
returning a control file, use the following syntax:

t = hdlnewcontrolfile(...)

See also hdlnewcontrolfile in the Simulink HDL Coder documentation.

-novopt Flag Added to Default Simulation Command
in Generated Compilation Scripts
For improved operation with the ModelSim (version 6.2 and later) simulator,
the default values of the HDLSimCmd property string (and the Simulation
Command GUI option) now includes the -novopt flag, as follows:

'vsim -novopt work.%s\n'

The -novopt flag directs the ModelSim simulator not to perform optimizations
that remove signals from the simulation view.

Compatibility Considerations
If you are using ModelSim 6.0 or an earlier version, you should set the
HDLSimCmd property string (or the Simulation Command GUI option) to
omit the -novopt option, as follows:

'vsim work.%s\n'

37

Simulink® HDL Coder™ Release Notes

Version 1.3 (R2008a) Simulink HDL Coder Software
This table summarizes what’s new in V1.3 (R2008a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports No

New features and changes introduced in this version are:

• “Complex Data Type Support” on page 39

• “Test Bench Enhancements” on page 40

• “Additional Blocks Supported for HDL Code Generation” on page 42

• “Enhanced Pipelining Support” on page 43

• “Additional RAM Blocks” on page 45

• “Enhanced Math Function and Divide Block Support” on page 46

• “Optional Suppression of Reset Logic Generation for Selected Delay Blocks”
on page 46

• “Enhanced Embedded MATLAB Function Block Support” on page 47

• “Stateflow Chart Support Supports Complex Data Type” on page 50

• “hdlnewcontrolfile Function Generates Control Files Automatically” on
page 51

• “Integrating FPGA Vendor Tools with Simulink® HDL Coder” on page 51

• “Timing Controller Optimization for Multirate Models” on page 51

• “Enhanced modelscope Syntax Increases Portability of Control Files” on
page 52

38

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

• ““What’s This?” Context-Sensitive Help Available for Simulink
Configuration Parameters Dialog” on page 53

• “Limited Variable-Step Solver Support” on page 54

Complex Data Type Support
The coder now supports use of signals of complex data type.

You can use complex signals in the test bench without restriction.

In the device under test (DUT) selected for HDL code generation, support for
complex signals is limited to a subset of the blocks supported by the coder.
Some restrictions apply for some of these blocks. These blocks are listed in
“Blocks That Support Complex Data”.

New Options Supporting Complex Data Types
Two new code generation options have been added to help you customize
naming conventions for the real and imaginary components of complex signals
in generated HDL code. These options are available to the Global Settings /
General pane in the HDL Coder pane of the Configuration Parameters
dialog box, as shown in the following figure.

39

Simulink® HDL Coder™ Release Notes

The Complex real part postfix option (and the corresponding
ComplexRealPostfix CLI property) specifies a string to be appended to the
names generated for the real part of complex signals. The default postfix is
'_re'. See also “Complex real part postfix”.

The Complex imaginary part postfix option (and the corresponding
ComplexImagPostfix CLI property) specifies a string to be appended to the
names generated for the imaginary part of complex signals. The default
postfix is '_im'. See also “Complex imaginary part postfix”.

Test Bench Enhancements
This release includes significant enhancements to test bench generation.

40

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

Test Bench Supports Complex Data Type
You can use complex signals in the test bench without restriction. Use of
complex signals within the DUT is limited to a subset of supported blocks.
See also “Complex Data Type Support” on page 39.

New Test Bench Options and Properties
A number of options have been added to the HDL Coder / Test Bench pane
of the Configuration Parameters dialog box, as shown in the following figure.

Most of the new options have a corresponding command-line property. The
following table lists the new options and their corresponding CLI properties,
and provides hyperlinks to the relevant documentation.

41

Simulink® HDL Coder™ Release Notes

GUI Option Command-line Property

Setup time: See “Setup time (ns)” This is a display-only field. It
does not have a corresponding
user-settable command-line
property.

Clock enable delay (in clock
cycles): See “Clock enable delay (in
clock cycles)”

TestBenchClockEnableDelay

Reset length : See “Reset length (in
clock cycles)”

ResetLength

Hold input data between
samples: See “Hold input data
between samples”

HoldInputDataBetweenSamples

Initialize test bench inputs: See
“Initialize test bench inputs”

InitializeTestBenchInputs

Multi-file test bench : See
“Multi-file test bench”

MultifileTestBench

Test bench data file name postfix
: See “Test bench data file name
postfix”

TestBenchDataPostFix

Ignore test bench data checking:
See “Ignore output data checking
(number of samples)”

IgnoreDataChecking

Generate cosimulation blocks:
See “Cosimulation blocks”

GenerateCoSimBlock

Additional Blocks Supported for HDL Code
Generation
The coder now supports the following blocks for HDL code generation:

• Communications Blockset/Comm Sources/Sequence Generators/PN
Sequence Generator

(This block requires Communications Blockset™.)

42

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

• Signal Processing Blockset/Multirate Filters/CIC Decimation

• Signal Processing Blockset/Multirate Filters/FIR Decimation

• Signal Processing Blockset/Signal Operations/NCO

• Signal Processing Blockset/Signal Processing Sources/Sine Wave

• Simulink/Discontinuities/Saturation

• Simulink/Discrete/Discrete-Time Integrator

• Simulink/Math Operations/Real-Imag to Complex

• Simulink/Math Operations/Complex to Real-Imag

• Simple Dual Port RAM (see also “Additional RAM Blocks” on page 45.)

• Single Port RAM (see also “Additional RAM Blocks” on page 45.)

See“Summary of Block Implementations” for a complete listing of blocks that
are currently supported for HDL code generation.

Enhanced Pipelining Support
In the previous release, the coder introduced output pipelining support
for many block implementations (see “OutputPipeline”). In this release,
pipelining support has been significantly expanded and enhanced. The
following sections discuss new pipelining features.

Input Pipelining
You can now specify generation of input pipeline registers for selected
blocks. To do this, invoke the new block implementation parameter
{'InputPipeline', nStages} in a control file. The parameter value
(nStages) specifies the number of input pipeline stages (pipeline depth) in the
generated code. See “InputPipeline” for further information.

Most HDL block implementations support InputPipeline. See “Summary
of Block Implementations” for a complete list of block implemenations and
their parameters.

43

Simulink® HDL Coder™ Release Notes

Automatic Pipeline Insertion for Embedded MATLAB Function
Block and Stateflow Chart
In this release, the coder introduces automatic pipeline insertion, a special
optimization for HDL code generated from Embedded MATLAB Function
blocks or Stateflow charts. Automatic pipeline insertion is performed when
the {'OutputPipeline', nStages} parameter is specified for these blocks.
When you specify OutputPipeline, the coder inserts internal pipeline stages
into the HDL code generated for these blocks (rather than at the output of the
HDL code) whenever possible. The nStages argument defines the number of
pipeline stages to be inserted.

Automatic pipeline insertion lets you achieve higher clock rates in your HDL
applications, at the cost of some latency caused by the introduction of pipeline
registers.

See “Distributed Pipeline Insertion” for a detailed description of this feature.

Customizable Pipeline Register Names
When generating code for pipeline registers, the coder appends a postfix string
to names of input or output pipeline registers. The default postfix string
is _pipe. You can now customize the postfix string. To specify the postfix,
use the Pipeline postfix option in the Global Settings / General pane in
the HDL Coder pane of the Configuration Parameters dialog box (see the
following figure). Alternatively, you can pass the desired postfix string in the
makehdl property PipelinePostfix. See “Pipeline postfix” for an example.

44

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

Additional RAM Blocks
The coder now supports two new RAM blocks, supplementing the previously
supported Dual Port RAM block:

• Simple Dual Port RAM: This block is identical to the Dual Port RAM , but
does not have a data output at the write port. If data output at the write
port is not required, you can achieve better RAM inferring with synthesis
tools by using the Simple Dual Port RAM block rather than the Dual Port
RAM block.

• Single Port RAM: This block provides data input, write address and write
enable, and data output ports. The block GUI includes a Output data
during write drop-down menu, providing options that control how the
generated RAM handles data that is read into the RAM during a write
operation.

See “RAM Blocks” for detailed information on RAM blocks.

45

Simulink® HDL Coder™ Release Notes

Enhanced Math Function and Divide Block Support
The coder now supports a wider range of functions and algorithms for the
Math Function and Divide blocks, as follows:

• The Math Function block reciprocal operation is now supported.
Implementations using either hardware divide (HDL / operator) or
iterative Newton algorithm are available.

• The Math Function block conj function is now supported.

• The Math Function block sqrt function implementations now support a
choice of multiply/add, bitset shift/addition, or iterative Newton algorithms.

• The Math Operations/Divide block reciprocal operation now supports
implementations using either hardware divide (HDL / operator) or the
iterative Newton algorithm.

See “Math Function Block Implementations” and “Divide Block
Implementations” for further information.

Optional Suppression of Reset Logic Generation for
Selected Delay Blocks
The new {'ResetType','None'} block implementation parameter lets you
suppress generation of reset logic for selected delay blocks. The following
blocks support this parameter:

• Integer Delay

• Tapped Delay

• Unit Delay

• Unit Delay Enabled

The following control file specifies suppression of reset logic for a specific unit
delay block within the subsystem resetnone_examp/HDLSubsystem.

function c = resetnone_examp

% Control file for resetnone_examp
c = hdlnewcontrol(mfilename);
c.generateHDLFor('resetnone_examp/HDLSubsystem');

46

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Suppress reset logic for Unit Delay block

c.forEach('resetnone_examp/HDLSubsystem/Unit Delay',...
'built-in/UnitDelay', {},...
'hdldefaults.UnitDelayHDLEmission', {'ResetType','none'});

See ResetType for further information.

Enhanced Embedded MATLAB Function Block Support
HDL code generation support for the Embedded MATLAB Function block has
been enhanced in Release 2008a, as discussed in the following sections.

hdlfimath Utility for Configuring Optimized FIMATH Settings
In this release, the coder provides the M-function hdlfimath.m, a utility that
defines a FIMATH specification that is optimized for HDL code generation.
When you configure an Embedded MATLAB Function Block for HDL code
generation, it is strongly recommended that you replace the default FIMATH
for fixed-point signals specification with a call to the hdlfimath function,
as shown in the following figure.

47

Simulink® HDL Coder™ Release Notes

See “Use the hdlfimath Utility for Optimized FIMATH Settings” for further
information.

Support for Complex Data Type
Embedded MATLAB Function block now supports use of complex data
type for HDL code generation. All operators that support complex data
types can be used in a Embedded MATLAB Function block code, subject to
some restrictions. See the eml_hdl_design_patterns library for numerous

48

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

examples showing applications of complex arithmetic in Embedded MATLAB
Function blocks.

Support for Compiled External M-Functions on the Embedded
MATLAB Path
You can now generate HDL code from Embedded MATLAB Function blocks
that include compiled external M-functions. This feature lets you write
reusable M-code that can be called from multiple Embedded MATLAB
Function blocks.

Such functions must be defined in M-files that are on the Embedded MATLAB
path, and must include the %#eml compilation directive. See “Adding the
Compilation Directive %#eml” in the Embedded MATLAB documentation
for complete details.

Support for Non-Tunable Parameter Arguments
An Embedded MATLAB function argument can be declared as a parameter
argument by setting its Scope to Parameter in the Ports and Data Manager
GUI.

Parameter arguments for Embedded MATLAB Function blocks do not
appear as signal ports on the block. Parameter arguments do not take their
values from signals in the Simulink model. Instead, their values come from
parameters defined in a parent Simulink masked subsystem or variables
defined in the MATLAB base workspace.

Only nontunable parameter arguments are supported for HDL code
generation. If you declare parameter arguments in Embedded MATLAB
function code that is intended for HDL code generation, be sure to clear the
Tunable option for each parameter argument.

See also “Parameter Arguments in Embedded MATLAB Functions” in the
Simulink documentation.

49

Simulink® HDL Coder™ Release Notes

Enhanced Support for Fixed-Point Functions

Rounding Functions. The Embedded MATLAB Function block now
supports the following Fixed-Point Toolbox™ rounding functions for HDL
code generation:

• ceil

• fix

• floor

• nearest

See also “Supported Functions and Limitations of the Fixed-Point Embedded
MATLAB Subset” in the Fixed-Point Toolboxdocumentation.

Other Functions. The Embedded MATLAB Function block now supports the
following for HDL code generation:

• The bitreplicate function

• The bitconcat function now supports:

- single-vector argument:

bitconcat([a_vector]);

- variable argument list:

bitconcat(a,b,c,...);

For general information on these functions, see “Supported Functions
and Limitations of the Fixed-Point Embedded MATLAB Subset” in the
Fixed-Point Toolboxdocumentation.

Stateflow Chart Support Supports Complex Data
Type
Stateflow charts now support the use of complex data types for HDL code
generation. All operators that support complex data types can be used in
a chart, without restriction.

50

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

See also “Stateflow HDL Code Generation Support”.

hdlnewcontrolfile Function Generates Control Files
Automatically
The coder provides the new hdlnewcontrolfile utility to help you construct
code generation control files. Given a selection of one or more blocks from
your model, hdlnewcontrolfile generates a control file containing forEach
statements and comments providing information about all supported
implementations and parameters, for all selected blocks. The generated
control file is automatically opened in the MATLAB Editor for further
customization. See hdlnewcontrolfile for details.

Integrating FPGA Vendor Tools with Simulink HDL
Coder
You can now integrate Simulink HDL Coder with third-party FPGA
vendor tools for HDL code generation. For detailed information on
how to do this, see the Simulink HDL Coder Technical literature page:
http://www.mathworks.com/products/slhdlcoder/technicalliterature.html.

Timing Controller Optimization for Multirate Models
The new Optimize timing controller option (and the corresponding
OptimizeTimingController CLI property) optimizes generated
TimingController entities for speed and code size by generating multiple
counters (one counter for each rate in the model) in the timing controller code.
The benefit of this optimization is that it generates faster logic, and reduces
generated code size.

By default, the Optimize timing controller option is selected, as shown in
the following figure.

51

http://www.mathworks.com/products/slhdlcoder/technicalliterature.html

Simulink® HDL Coder™ Release Notes

See “Optimize timing controller” for further details.

Enhanced modelscope Syntax Increases Portability
of Control Files
The modelscope argument to the forEach and forAll control file methods
has been enhanced to allow use of the period (.) to represent the root-level
model. This lets you represent the current model as an abstraction, instead of
explicitly coding the model name, as in the following example:

cfg.forEach('./Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'hdldefaults.MinMaxCascadeHDLEmission');

If you represent the model in this way, and then save the model under a
different name, the control file does not require any change. Using the period
to represent the root-level model makes the modelscope independent of the
model name, and therefore more portable.

52

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

See also “Representation of the Root Model in modelscopes” in the Simulink
HDL Coder User’s Guide.

Compatibility Considerations
When you save HDL code generation settings to a control file, the control file
contains a generateHDLFor statement that specifies the path to the DUT
specified in the Generate HDL for field. In previous releases, the root-level
model in this path was represented by an explicit model name reference. In
release 2008a, by default, the root-level model is represented by the period, as
described above.

If you resave model settings to an existing control file, be aware that such
explicit references to root-level model name will be changed to the period
syntax, in accordance with this new default. This will not affect the operation
of your existing control files in any way.

“What’s This?” Context-Sensitive Help Available for
Simulink Configuration Parameters Dialog
R2008a introduces “What’s This?” context-sensitive help for parameters
that appear in the Simulink Configuration Parameters dialog. This feature
provides quick access to a detailed description of the parameters, saving you
the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after a right-click on the Start time parameter in the Solver
pane.

53

Simulink® HDL Coder™ Release Notes

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

Limited Variable-Step Solver Support
In previous releases, only fixed-step solvers were supported for HDL code
generation. In the current release, you can select a variable-step Solver type
for your model, under the following limited conditions:

• The device under test (DUT) is single-rate.

• The sample times of all signals driving the DUT are greater than 0.

54

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

Version 1.2 (R2007b) Simulink HDL Coder Software
This table summarizes what’s new in V1.2 (R2007b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports No

New features and changes introduced in this version are:

• “HDL Code Generation for Single-Clock Multirate Models” on page 55

• “Additional Blocks Supported for HDL Code Generation” on page 56

• “Dual Port RAM Block Supported for Simulation and Code Generation”
on page 57

• “Block Implementation Parameters Include Output Pipelining” on page 57

• “Summary of GUI Updates” on page 58

• “Digital Filter Block Restriction Removed” on page 60

• “Support for New Embedded MATLAB Bitwise Functions” on page 61

• “Default Hardware Target for Synthesis Scripts Updated to Virtex-4 ” on
page 61

HDL Code Generation for Single-Clock Multirate
Models
The coder now supports HDL code generation for single-clock, single-tasking
multirate models. Your model can include blocks running at multiple sample
rates:

• Within in the device under test (DUT)

55

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b

Simulink® HDL Coder™ Release Notes

• In the test bench driving the DUT

• In both the test bench and the DUT

Multirate code generation support is described in detail in “Generating HDL
Code for Multirate Models” in the documentation.

Additional Blocks Supported for Multirate Code Generation
The following blocks, frequently used in construction of multirate models, are
now supported for HDL code generation:

• Signal Attributes/Rate Transition

• Signal Processing Blockset/Signal Operations/Downsample

• Signal Processing Blockset/Signal Operations/Upsample

New Property Added in Support of Multirate Code Generation
To support multirate code generation, a new makehdl property,
HoldInputDataBetweenSamples, has been added. This property determines
how long (in terms of base rate clock cycles) data values for subrate signals
are held in a valid state. See HoldInputDataBetweenSamples for details.

Requirements and Restrictions for Multirate Code Generation
Certain requirements and restrictions apply to the use of multirate models
for HDL code generation. See “Configuring Multirate Models for HDL Code
Generation” for further information.

Additional Blocks Supported for HDL Code
Generation
The coder now supports the following blocks for HDL code generation:

• Additional Math & Discrete/Additional Discrete/Unit Delay Enabled

• Math Operations/Divide

• Math Operations/Math Function (sqrt function only)

• Signal Attributes/Rate Transition

56

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

• Signal Processing Blockset/Signal Operations/Downsample

• Signal Processing Blockset/Signal Operations/Upsample

• Dual Port RAM (For information on this new block, see also “Dual Port
RAM Block Supported for Simulation and Code Generation” on page 57.)

See “Summary of Block Implementations” for a complete listing of blocks that
are currently supported for HDL code generation.

Dual Port RAM Block Supported for Simulation and
Code Generation
The coder now provides the Dual Port RAM Block for use in simulation and
code generation.

The Dual Port RAM block lets you:

• Simulate the behavior of a dual-port RAM with registered outputs in your
model.

• Generate an interface to the inputs and outputs of the RAM in HDL code.

See “RAM Blocks” for full details.

Block Implementation Parameters Include Output
Pipelining
The coder now supports block implementation parameters, which let you
control details of the code generated for specific block implementations. Block
implementation parameters are passed as property/value pairs to forEach
or forAll calls in a code generation control file.

Supported Block Implementation Parameters
Block implementation parameters supported in the current release include:

• 'OutputPipeline', nStages: This parameter lets you specify a pipelined
implementation for selected blocks. The parameter value (nStages)
specifies the number of pipeline stages (pipeline depth) in the generated

57

Simulink® HDL Coder™ Release Notes

code. OutputPipeline is supported by most Simulink HDL Coder HDL
Coder block implementations.

• Interface generation parameters let you customize features of an interface
generated for the following block types:

- simulink/Ports & Subsystems/Model

- built-in/Subsystem

- lfilinklib/HDL Cosimulation

- modelsimlib/HDL Cosimulation

For example, you can specify generation of a black box interface for a
subsystem, and pass in parameters that specify the generation and
naming of clock, reset, and other ports in HDL code. Interface generation
parameters are described in “Customizing the Generated Interface”.

For more information on block implementation parameters, see the following
sections in the documentation:

• “Specifying Block Implementations and Parameters in the Control File”

• “Block Implementation Parameters”

• “Summary of Block Implementations”

Using hdlnewforeach to Find Block Implementation Parameters
Given a selection of one or more blocks from your model, the hdlnewforeach
function returns information about the available HDL implementations for
each block.

In the current release, the information returned by hdlnewforeach has been
expanded. hdlnewforeach now returns an optional cell array of strings
specifying the parameter(s) corresponding to each block implementation.

See “Generating Selection/Action Statements with the hdlnewforeach
Function” for details.

Summary of GUI Updates
The following updates have been made to the Simulink HDL Coder GUI:

58

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

• The Enable prefix option is now supported by the GUI as well as by the
EnablePrefix command-line property. See “Enable prefix” for details on
this option.

• The default value for the Synthesis termination field of the EDA Tool
Scripts dialog box has changed, as shown in the following figure. The
default hardware target string in generated synthesis scripts now specifies

- technology option: VIRTEX4

In previous releases, this option defaulted to VIRTEX2.

- part option: XC4VSX35

In previous releases, this option defaulted to XC2V500.

59

Simulink® HDL Coder™ Release Notes

See also “Default Hardware Target for Synthesis Scripts Updated to
Virtex-4 ” on page 61.

Digital Filter Block Restriction Removed
In previous releases, Filter Design HDL Coder™ software was required
to generate HDL code for the Digital Filter block when the Dialog
parameters option was selected in the Coefficient source option group.
This requirement has been removed.

In the current release, the HDL code generation requirements for the Digital
Filter block vary according to the Coefficient source option you select, as
follows:

• Dialog parameters: No additional toolboxes or blocksets required for
HDL code generation.

60

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

• Discrete-time filter object: Filter Design HDL Coder software required.

• Input port(s): This option is not supported for HDL code generation.

Support for New Embedded MATLAB Bitwise
Functions
The code supports the new Embedded MATLAB fixed-point bitwise functions
introduced in R2007b. Many of these functions map directly to HDL bitwise
operators, resulting in very efficient HDL code. See “Using Fixed-Point
Bitwise Functions” for examples of the use of these functions in HDL code
generation.

For general information on Embedded MATLAB bitwise functions, see
“Bitwise Operations” in the Fixed-Point Toolbox documentation.

Compatibility Considerations
In previous releases, the return type of the bitget function was ufix8. For
more efficient HDL code generation, the return data type of the bitget
function has been changed to ufix1. If your existing Embedded MATLAB
code performs type casts to adapt values returned from bitget for HDL code
generation, you may be able to eliminate these type casts.

Default Hardware Target for Synthesis Scripts
Updated to Virtex-4
The default hardware target string in generated synthesis scripts now
specifies

• technology option: VIRTEX4

In previous releases, this option defaulted to VIRTEX2.

• part option: XC4VSX35

In previous releases, this option defaulted to XC2V500.

These updates affect the default value for the HDLSynthTerm property. The
default is:

61

Simulink® HDL Coder™ Release Notes

['set_option -technology VIRTEX4\n',...
'set_option -part XC4VSX35\n',...
'set_option -synthesis_onoff_pragma 0\n',...
'set_option -frequency auto\n',...
'project -run synthesis\n']

The default value for the HDLSynthTerm property appears in the Synthesis
termination field of the EDA Tool Scripts dialog box, as shown in the
following figure.

See also “Generating Scripts for HDL Simulators and Synthesis Tools”.

62

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

Compatibility Considerations
If you have existing models that generate synthesis scripts using the previous
defaults for technology or part, you may want to update your models and
regenerate scripts.

63

Simulink® HDL Coder™ Release Notes

Version 1.1 (R2007a) Simulink HDL Coder Software
This table summarizes what’s new in V1.1 (R2007a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Bug Reports No

New features and changes introduced in this version are

• “Sign Block Supported for HDL Code Generation” on page 64

• “Link for Cadence Incisive HDL Cosimulation Block Supported” on page 64

• “GUI Support for Generation of EDA Tool Scripts” on page 65

• “Embedded MATLAB Function Block Supported for HDL Code Generation”
on page 66

• “Stateflow HDL Code Generation Updates” on page 66

Sign Block Supported for HDL Code Generation
The Sign block (Simulink/Math Operations/Sign) is now supported for HDL
code generation.

Link for Cadence Incisive HDL Cosimulation Block
Supported
The coder now supports HDL code generation for the Link for Cadence®

Incisive® HDL Cosimulation Block. You can use the HDL Cosimulation block
with the coder to generate an interface to your manually written or legacy
HDL code. When an HDL Cosimulation block is included in a model, the
coder generates a VHDL or Verilog interface, depending on the selected target
language. See “Code Generation for HDL Cosimulation Blocks” for details.

64

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a

Version 1.1 (R2007a) Simulink® HDL Coder™ Software

GUI Support for Generation of EDA Tool Scripts
The new EDA Tool Scripts pane of the GUI (shown in the following figure)
lets you set all options that control generation of script files for third-party
electronic design automation (EDA) tools. In previous releases, script
generation options were available only through makehdl and makehdltb
properties.

The list on the left of the EDA Tool Scripts pane lets you select from the
following categories of options:

• Compilation script: Options related to customizing scripts for
compilation of generated VHDL or Verilog code.

• Simulation script: Options related to customizing scripts for HDL
simulators.

• Synthesis script: Options related to customizing scripts for synthesis
tools.

65

Simulink® HDL Coder™ Release Notes

See “Generating Scripts for HDL Simulators and Synthesis Tools” for detailed
information on the EDA Tool Scripts options and on script generation in
general.

Embedded MATLAB Function Block Supported for
HDL Code Generation
The coder now supports synthesizable HDL code generation from the
Embedded MATLAB Function block. See “Generating HDL Code with the
Embedded MATLAB Function Block” for detailed information.

Stateflow HDL Code Generation Updates
This section describes some limitations on the use of Stateflow charts in HDL
code generation have been removed in the current release. These are:

Restriction on Reading from Output Ports Removed
In the previous release, reading from output ports was disallowed. This
restriction has been relaxed. You can now read from output ports if outputs
are registered. (Outputs are registered if the Initialize Outputs Every
Time Chart Wakes Up option is deselected.)

Stateflow Charts Fully Support Fixed Point Data Type
In the previous release, fixed-point data type support for Stateflow HDL code
generation was limited to fixed point without scaling. This limitation has
been removed. You can now use fixed-point data types without restriction in
Stateflow charts intended for HDL code generation.

66

Compatibility Summary for Simulink® HDL Coder™ Software

Compatibility Summary for Simulink HDL Coder Software
This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with
Version Compatibility Impact

Latest Version
V1.6 (R2009b)

See the Compatibility
Considerations subheading
for this new feature or change:

• “DUT Argument Required
for checkhdl and makehdl
Commands” on page 9

• “Algebraic Loops Disallowed for
HDL Code Generation” on page 9

• “AddClockEnablePort
Implementation Parameter
for RAM Blocks Deprecated” on
page 10

V1.5 (R2009a) See the Compatibility
Considerations subheading
for this new feature or change:

• “New Default HDL
Implementations for Selected
Blocks” on page 19

• “New HDL Implementations for
Selected Blocks” on page 21

67

Simulink® HDL Coder™ Release Notes

Version (Release) New Features and Changes with
Version Compatibility Impact

V1.4 (R2008b) See the Compatibility
Considerations subheading
for this new feature or change:

• “Default Entity Conflict Postfix
Changed” on page 34

• “-novopt Flag Added to Default
Simulation Command in
Generated Compilation Scripts”
on page 37

• “New DistributedPipelining
Implementation Parameter for
Embedded MATLAB Function
Blocks and Stateflow Charts” on
page 34

V1.3 (R2008a) See the Compatibility
Considerations subheading
for this new feature or change:

• “Enhanced modelscope Syntax
Increases Portability of Control
Files” on page 52

V1.2 (R2007b) See the Compatibility
Considerations subheading
for this new feature or change:

• “Default Hardware Target for
Synthesis Scripts Updated to
Virtex-4 ” on page 61

• “Support for New Embedded
MATLAB Bitwise Functions” on
page 61

V1.1 (R2007a) None

68

	toc
	Summary by Version
	Using Release Notes
	What Is in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	About Functions and Properties Being Removed
	Version 1.6 (R2009b) Simulink HDL Coder Software
	Triggered Subsystems Support for HDL Code Generation
	Stateflow Events Support for HDL Code Generation
	Support for Global Oversampling Clock
	Test Bench GUI Reorganized
	MATLAB Editor Supports VHDL and Verilog Syntax Highlighting
	Hyperlinked Requirements Comments Included in HTML Code Generati
	HTML Code Generation Report from Root-Level Model Supported
	Generation of Simulink Model for Cosimulation of Generated HDL C
	Additional Simulink Blocks Supported for HDL Code Generation
	New hdldemolib Block Supports Streaming FFT
	Algebraic Loops Disallowed for HDL Code Generation
	Compatibility Considerations

	DUT Argument Required for checkhdl and makehdl Commands
	Compatibility Considerations

	AddClockEnablePort Implementation Parameter for RAM Blocks Depre
	Compatibility Considerations

	Additional Lookup Table Blocks Supported
	Discrete FIR Filter Supports Distributed Arithmetic Architecture
	Generation of Multicycle Path Constraint Information
	Biquad Filter and Digital Filter Blocks Support Complex Input Da
	Support for Adding or Removing HDL Configuration Component

	Version 1.5 (R2009a) Simulink HDL Coder Software
	hdlsupported Library Reorganized
	HTML Code Generation Report
	Additional Simulink Blocks Supported for HDL Code Generation
	Enabled Subsystems Supported for HDL Code Generation
	New Default HDL Implementations for Selected Blocks
	Compatibility Considerations

	New HDL Implementations for Selected Blocks
	Compatibility Considerations

	Distributed Arithmetic Implementations for the Digital Filter Bl
	Complex Data Supported for the Digital Filter Block
	Requirements Comments Included in Generated Code
	Restriction on fi and fimath Rounding Modes in Embedded MATLAB
	Restriction on for Loop Increment in Embedded MATLAB Function Bl
	Generic RAM Template Supports RAM Without a Clock Enable Signal
	Generating ROM with Lookup Table and Unit Delay Blocks

	Version 1.4 (R2008b) Simulink HDL Coder Software
	New hdldemolib Blocks Support FFT, HDL Counter, and Bitwise Oper
	Additional Simulink Blocks Supported for HDL Code Generation
	Complex Signals Supported for Additional Blocks
	Code Annotation Support
	New Constant Block Implementation Indicates Hi-Z or Unknown Stat
	New Test Bench Reference Postfix Option
	New Default HDL Implementations for Selected Blocks
	Compatibility Considerations

	Default Entity Conflict Postfix Changed
	Compatibility Considerations

	New DistributedPipelining Implementation Parameter for Embedded
	Compatibility Considerations

	Coefficient Multiplier Optimization for Digital Filter, FIR Deci
	hdlnewblackbox Function Generates Black Box Control Statements
	hdlnewcontrolfile Function Optionally Returns Result to String
	-novopt Flag Added to Default Simulation Command in Generated Co
	Compatibility Considerations

	Version 1.3 (R2008a) Simulink HDL Coder Software
	Complex Data Type Support
	New Options Supporting Complex Data Types

	Test Bench Enhancements
	Test Bench Supports Complex Data Type
	New Test Bench Options and Properties

	Additional Blocks Supported for HDL Code Generation
	Enhanced Pipelining Support
	Input Pipelining
	Automatic Pipeline Insertion for Embedded MATLAB Function Block
	Customizable Pipeline Register Names

	Additional RAM Blocks
	Enhanced Math Function and Divide Block Support
	Optional Suppression of Reset Logic Generation for Selected Dela
	Enhanced Embedded MATLAB Function Block Support
	hdlfimath Utility for Configuring Optimized FIMATH Settings
	Support for Complex Data Type
	Support for Compiled External M-Functions on the Embedded MATLAB
	Support for Non-Tunable Parameter Arguments
	Enhanced Support for Fixed-Point Functions

	Stateflow Chart Support Supports Complex Data Type
	hdlnewcontrolfile Function Generates Control Files Automatically
	Integrating FPGA Vendor Tools with Simulink HDL Coder
	Timing Controller Optimization for Multirate Models
	Enhanced modelscope Syntax Increases Portability of Control File
	Compatibility Considerations

	“What’s This?” Context-Sensitive Help Available for Simulink Con
	Limited Variable-Step Solver Support

	Version 1.2 (R2007b) Simulink HDL Coder Software
	HDL Code Generation for Single-Clock Multirate Models
	Additional Blocks Supported for Multirate Code Generation
	New Property Added in Support of Multirate Code Generation
	Requirements and Restrictions for Multirate Code Generation

	Additional Blocks Supported for HDL Code Generation
	Dual Port RAM Block Supported for Simulation and Code Generation
	Block Implementation Parameters Include Output Pipelining
	Supported Block Implementation Parameters
	Using hdlnewforeach to Find Block Implementation Parameters

	Summary of GUI Updates
	Digital Filter Block Restriction Removed
	Support for New Embedded MATLAB Bitwise Functions
	Compatibility Considerations

	Default Hardware Target for Synthesis Scripts Updated to Virtex-
	Compatibility Considerations

	Version 1.1 (R2007a) Simulink HDL Coder Software
	Sign Block Supported for HDL Code Generation
	Link for Cadence Incisive HDL Cosimulation Block Supported
	GUI Support for Generation of EDA Tool Scripts
	Embedded MATLAB Function Block Supported for HDL Code Generation
	Stateflow HDL Code Generation Updates
	Restriction on Reading from Output Ports Removed
	Stateflow Charts Fully Support Fixed Point Data Type

	Compatibility Summary for Simulink HDL Coder Software

